Analyzing Requirements
By Dr. Steve Hadfield

One of great things about flowcharts is that they explicitly show the logic and flow of control of the algorithm that they express. However, the narrative and verbal descriptions of the problems that they are designed to solve can be much more ambiguous. Problem descriptions, which represent the requirements for your program, may have omissions and inconsistencies and may hide some important aspects of the problem. Thus we must learn to read the requirements of a problem statement with a critical eye and turn the requirements into a more explicit format.

This brief reading will give you some simple methods and tools to help you identify and analyze the requirements within a problem statement. Here’s a quick summary:

· Make an itemized list of the requirements as you read the problem statement.

· Explicitly list the inputs, outputs and major processing steps included in the problem description.

· When a condition is specified, make sure you know how to handle every possibility for the variable being tested

· When conditions involve multiple variables, make a table with the rows representing conditions for one variable and the columns representing the conditions for the other variable(s). Then fill in the table to state what action should be performed for each combination of conditions.

In reality software engineers do many more tasks and use many more tools to analyze the requirements for a system. However the four methods above gives us a good start for analyzing all types of requirements, algorithms, and processes. These apply whether they will be made into programs executed by computers or into procedures executed by humans.

Let's look at each of the four methods list above in a bit more detail.

List the Requirements

While "list the requirements" sounds pretty trivial, it is a very common first step. In fact, our Air Force contracting process has all mandatory requirements stated with the word “Shall” and so our contractors are very tuned into this word. Consider the narrative below and list out the requirements within it.

Write a program that accepts a cadet’s GPA, MPA, and PEA and then calculates and outputs the associated OPA. The OPA is calculated as the GPA multiplied by 0.6 plus the MPA multiplied by 0.3 plus the PEA multiplied 0.1.

The extracted "requirements list" then becomes:

· Input GPA

· Input MPA

· Input PEA

· Output OPA

· Compute OPA as (GPA*0.6) + (MPA*0.3) + (PEA*0.1)

List Inputs, Outputs, and Main Processing Steps

	Inputs
	Processing
	Outputs

	GPA
	Compute OPA as (GPA*0.6) + (MPA*0.3) + (PEA*0.1)
	OPA

	MPA
	
	

	PEA
	
	

From the example above regarding an OPA calculation, we get the following inputs, outputs and processing steps which we can portray as:
Ensure All Possible Conditions Are Addressed
	GPA < 0.0
	0.0 <= GPA < 2.0
	2.0 <= GPA <3.0
	3.0 <= GPA <= 4.0
	GPA >= 4.0

	Report error
	Report AcaPro
	Report nothing
	Report Dean’s List
	Report error

When the requirements of a problem discuss conditions on a variable, be sure to figure out what should happen with all possible range of values. For example, if the problem statement said something like “if the GPA is 3.0 or above, report that the cadet is on the Dean’s List”. Well, what if the GPA is not 3.0 or above? Or, what if it is above 3.0 but it is also above 4.0? If we elaborate all the possible values, we should come up with something like the following:
Handle Complex Conditions with a Table

When conditions are complex and involve the current value of more than one variable, it is good to ensure that all combinations are considered and that nothing is conflicting. For example, if the requirements of a problem read as follows:
If a cadet’s GPA is 3.0 or above, report they are on the Dean’s List. If a cadet’s MPA is 3.0 or above, report they are on the Commandant’s List. If a cadet’s PEA is 3.0 or above, report they are on the Athletic List. If a cadet’s GPA, MPA, and PEA are all 3.0 or above, only report that they are on the Superintendent’s List.
Such a list of conditions can get very confusing! To help clarify the requirements of a problem it is often helpful to put them into a table. Since this problem has three variables, we’ll make a table where the rows address one variable and the column addresses the other two. Since there are four combinations of these other two variables, we’ll need four columns in our table. The entries within the table show what should be reported in each case.

	
	MPA < 3.0 and PEA < 3.0
	MPA >= 3.0 and PEA < 3.0
	MPA < 3.0 and PEA >= 3.0
	MPA >= 3.0 and PEA >= 3.0

	GPA < 3.0
	Report nothing
	Commandant’s List
	Athletic List
	Commandant’s List

Athletic List

	GPA >= 3.0
	Dean’s List
	Dean’s List

Commandant’s List
	Dean’s List

Athletic List
	Superintendent’s List

As an exercise, consider applying this table technique to the task of taking a point in the X-Y plane and determining whether it is in Quadrant I, II, III, or IV. This is fairly simple in that you just check if X is greater than or less than 0 and doing the same for Y. However, what happens if one or both X and Y are equal to zero?

Let’s consider one more example in the following problem statement:

Write a program that classifies the weather as either “nice” or “yucky” based upon the current temperature and humidity. If the temperature is between 60 and 80 degrees, report “nice”. If the temperature is between 50 and 60 and the humidity is below 30%, report “nice”. If the humidity is above 80%, report “yucky”.

When we produce a table for these conditions, we get the following:
	
	Humidity < 30%
	Humidity between 30% and 80% inclusive
	Humidity > 80%

	Temperature < 50
	
	
	Yucky

	Temperature between 50 and 60
	Nice
	
	Yucky

	Temperature between 60 and 80
	Nice
	Nice
	Conflicting directions

	Temperature above 80
	
	
	Yucky

When we do this, we find that there is conflicting directions when the temperature is between 60 and 80 and the humidity is above 80%. We also see that there are several combinations of conditions for which the action is not specified. There is also a problem if the temperature is exactly 60 – which category does this case fall in? Without building the table, finding these ambiguities may have been difficult.

Summary

So the bottom line is that the requirements in a problem description may not be easily understood, totally complete, and/or unambiguous. By explicitly listing the requirements and putting conditionals into tables, we can frequently find such problems and then work to resolve them. With this reading you have hopefully learned a few basic tools to help you become a better problem solver. Furthermore, issues related to missing requirements, incomplete problem statements, or ambiguous directions are not limited to computer science – they are also inherent in other types of problem statements in the Air Force and elsewhere.

1 of 4

