edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

Introduction to RAPTOR: Data Files and OOP Mode

Creating and Displaying Data Files

In RAPTOR we can create data files and read from the files. However, sorting, inserting records, or

merging two data files requires some fancy footwork but if you’re very ambitious, try it!
The Redirect_Output Procedure

To create a data file, you use a Cal I to the Redirect_Output procedure. RAPTOR provides

two versions of this procedure.

1. Afilename is used as an argument to Redirect_Output, as shown in the following
examples:
e Redirect Output(sample.txt'™)
e Redirect Output('C:\MyDocuments\John.Doe\sample'™)

Note that in the first example, only the filename is given. In this case, the specified text file
will be created in the same directory as the current RAPTOR program. In the second
example, the full path to the file is given. Also, in the second example, no file extension is

specified. In this case, the file sample will be created with no extension.

2. You can either turn on or off Redirect_Output by including a simple yes/true or
no/false argument, as follows:
e Redirect Output(True)or Redirect Output(yes)
e Redirect Output(False) or Redirect Output(no)

Now, the output must be redirected to the data file by using a Cal I to the Redirect_Output
procedure. The name of the data file is used as the argument. This filename must be inside

guotation marks (as shown in the examples above).

Next, create the code to input data. One variable is required for each field of the records in the

data file. The Output box will PUT the value of those variables into each record. For example, to

10f 18

edited from Appendix D: Introduction to RAPTOR

Prelude to Programming: Concepts and Design, 5 edition

by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

create a data file with records that have two fields, Name and Salary, two variables are required
(probably called Name and Salary). As values for different employees are input, each Name and

Salary will be stored in the data file on a single line.

After the data has been entered, the Redirect_Output must be turned off. A Cal l is used to
call the Redirect_Output procedure again, but this time it’s turned off by using either no or

false as the argument.

Figure 1 (following page) shows a RAPTOR flowchart that will write two records, each with two
fields, to a data file named sample . txt. Figure 2 shows the contents of the file created (and

opened in Notepad).
The Redirect_Input Procedure

To display the contents of a data file, the Redirect_Input procedure is used. This works

similarly to the Redirect_Output procedure.

Ina Call to Redirect_Input, the filename of the file to be read is used as the argument as

follows:
Redirect Input('sample.txt")

The records are read, normally, within a loop. This is accomplished with GET statements. Input
boxes are used to GET each record (in this example, the records consist of the names and
salaries). Nothing needs to be entered as a prompt. Output boxes are used to display the output

of each record. The output is displayed in the Master Console.

20f 18

Wame«—""
1

Salary — 0
1

Radirect_Output fl>
("samplat”)

“Entar the firstnama"
GET Name
1
"Enterr the &t
salary:”
PUT Namea + " §"
+ Salary®
1
> “"Enter the sscond
name:”

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

"Entarr ﬂ:e sacond
salary:”
/ FUT :_fms i] _F; 5 L j sample.td - Motepad [«
1 File Edit Format View Help
. Mike $ 456
Radirset_Output(
= ~ o) [i"ﬂary § 325
PUT "This gossto the
Master Consols™f
Figure 1 Program to write records to Figure 2 Text file created

a data file

30f18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

The End_Of_Input Function

RAPTOR’s built-in function, End_OT_Input, can be used as the test condition of a loop. When
reading records in a data file, if this function is used as the test condition, RAPTOR will end the

loop when all the records have been read.

When all the records have been read and written to the Master Console, the
Redirect_Input procedure must be turned off with a Cal I to the procedure using False or

no for the argument.
How the Contents of the File are Stored

The Redirect_Input procedure does not separate each field in a record. Rather, each record
is stored as one line of string data. Each Input line reads all the fields in one record (or everything
that is on a single line in the data file). Therefore, the records can be output to the Master

Console but the fields cannot be manipulated easily to sort, insert, or merge. This can be done,

but it requires advanced programming.

Figure 3 shows a sample of the code to read records from a data file (sample . txt) and the

Master Console display.

4 0of 18

edited from Appendix D: Introduction to RAPTOR

Prelude to Programming: Concepts and Design, 5 edition

by Elizabeth Drake and Stewart Venit
Addison-Wesley Pub. 2011

PUT "This goasto the
niaster Comsol="]
1
FRadiract Input
("samplaixt)

[b

R

i%

7 GET record /

% MasterConscle

Font Font Size

This goes to the Master Console

Mike § 456
Mary §325
-——Fun finished-—

=

Edit Help

Clear

P |

Y

Radiract Input(falss)

Figure 3 Reading records from a data file and displaying them

Object-Oriented Mode

Object-oriented mode allows you to create classes with methods and attributes, instantiate

objects, and experiment with Object-Oriented Programming (OOP).

To use RAPTOR in OOP, you must select Object-oriented mode, as shown in Figure 4.

50f 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition

by Elizabeth Drake and Stewart Venit
Addison-Wesley Pub. 2011

[RS Oy _i'__i--“_

i

File Edit Scale View Run |Mode| Ink Window Generate Help

D|wals|nle|a 1V

Symbols LM

[]

Assignment

[PO

Call Retum
1L}
Input Cutput

)

Selection

Movice

¥ Object-oriented

Loop

——J i

Figure 4 Selecting Object-oriented mode

You will see two tabs: UML and main. RAPTOR uses a type of UML to create the structure of an

object-oriented program. The classes are created in the UML screen; therefore, click the UML tab.

The button to add a new class is shown in Figure 5. Note that a new Return symbol has been

added to the symbols.

L% Raptor- Untitled

File Edit Scale View Run Mode Ink Window Generate Help

vl ey B T e G e

AT (= —._)— féi_i‘j
Add Mew Class

Selection new Retum

Loop

D|@|als|=|ela] | [v]|n]|e|n]|r]f] ———) [150% -
Symbols UML | main |
D ; Access: ~ | Modifier:

F=SEen e

m

Figure 5 Adding a new class

6 of 18

edited from Appendix D: Introduction to RAPTOR

Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit
Addison-Wesley Pub. 2011

Creating a Class
When you click the Add New Class button to add a new class, a Name box will appear. Enter a

name for the Class, as shown in Figure 6.

4% Raptor- Untitled = | -]
File Edit Scale View PRun Mode Ink Window Generate Help

| v n|am|m[ng]|g| ———) [1s0% -

Djeals=aa| |
Symbols UmML |main | cute |
I:I MName: Cube Access: Public =~ Madifier Mone -
Asgignment by o gl - Lo+~ o= -3 [XK

Input Output |
Selection tﬂyﬁp;gg:;g(:lass
i
Loop o
G == O

Figure 6 Entering a Class name

In Figure 6, a Class named Cube has been created. Double-click inside the class (Cube) to add
members (methods and attributes). In RAPTOR, note that attributes are called Fields. A new

window opens to allow you to enter the members (see Figure 7).

7 0f 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

Members of Cube @
Syntax |
Modifier
MName |
I [
Type | = | r
Access | J [
Initial value |
vy S sy | S o |
Mam Type Access Modifiers
New
Method
New
Field

Close

4

Figure 7 Adding members to a Class

From this point, examples will be used to demonstrate the features of OOP mode and indicate

how to use them in a program.
Example: Using the Cube Class to Find the Volume of a Cube

We will use a class named Cube that takes the value of a side of a cube and computes the cube’s

volume. So we need the following:

attributes: Side (a number) and Volume (a number)
methods: SetSide(), GetSide(), ComputeVolume(), and GetVolume()

8 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

Figure 8 (following page) shows the Class Cube and its members.

e Note the syntax for a Field: A Field must be given a data type. The type of Side and

Volume is Int and in this case, each field has been given an initial value of 1.

e Note the syntax for a Method. If the Method receives a value passed from main, you must

include that parameter. For example,

0 The Method SetSide() is passed a value for the length of a side so the syntax for this
Method is
public void SetSide(int NewSide)

0 The Method ComputeVolume() uses the value of the side of a cube to do its

calculations so it needs one parameter, the integer variable Side. The syntax is

public void ComputeVolume(int Side)

0 The Method GetVolume() retrieves the value of the volume of the cube from
ComputeVolume() so the syntax for this Method is
public void GetVolume(int Volume)

0 The Method GetSide() does not need a parameter so the syntax is
public void GetSide()

90of 18

edited from Appendix D: Introduction to RAPTOR

Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

[rEr T
Members of Cube
Syniax ||:-n'.'ate int Side =1
Modifiers
Name |Side
[~ Static I~
Type |t >l | Fina [Volatile
Access |Private | ™
Initial value |
{ g Qe T3 A l : x
v Y Y a0 @ @ iz -
Name Type Acoess Modifiers
A Side int Private None
g* Volume int Private None
¥ SetSide wiid Pubslic HNone
¥ ComputeVolume waid Pubiic Hone
¥ GetyVolume wild Pubdlic Hone
W GetSide wid Public Hone
£

Figure 8 The Class Cube and its members

Once the Class has been created, a new tab is automatically added, with the name of the

Class (see Figure 9). Now the code for each of the Class’s methods must be created. Click the

Cube tab to see four new tabs—one for each Method, as shown in Figure 10.

10 of 18

edited from Appendix D: Introduction to RAPTOR

Prelude to Programming: Concepts and Design, 5 edition

by Elizabeth Drake and Stewart Venit
Addison-Wesley Pub. 2011

N PPt S LT

/{!’ Raptor - Cube_tutarial.rap

File Edit Scale View PRun Mode Ink Window Generate Help
D|w|@|s|n|els] o [u|m|m|[g|] ————) 150% ~
Symbols umML ‘main |Cube |
Mame: Access: - | Modifier: -
Assignment % 0 P Y U o o -3
[PO iwwq —G—
Call Fetum
Input Output Cube A new tab is
created for the
Selection - Side: int =1 Cube Class
- Volume: int
Loop + SetSide(NewSide:int) 1w

+ Getside() :void

+ ComputeVolume(Side: int...
+ GetvVolume{Volume: int):...

Figure 9 New tab for the Class Cube

11 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

/E." Raptor - Cube_tutorial.rap
File Edit 5cale View Run Mode Ink Window Generate Help

D|e|a|s|e|ala] | |r]o|a|n|r|f —) [150% -
Symbaols .UML |mai-. Cuhe !
- Side: | SetSid .
Asl%lm 5----‘-.-':::|Srr:r:; etoide |C0mpute‘v‘o|ume| Get‘u’clumel GetSldel
£ abs,
L PO one for each.

Call Eetum Method

1] L)

Input Cutput

Start (in NewSide)

Selection

this.Side «— NewSide

Loop

Figure 10 New tabs for each new Method

Code the Methods

The Methods for this program are as follows: SetSide(NewSide),
ComputeVolume(Side), GetVolume(Volume), and GetSide().

SetSide() Method:

The SetSide()Method does one thing only. It sets the value of the side of a cube, as passed to
it from the main program, to the variable NewSide. This assighment is done using the this

keyword. The code for this method is shown in Figure 11.

12 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

UML | main
- Side: int
- Volume:

ComputeVolume | GetVolume | GetSide |

Start (in NewSide)

Sets the value of
NewSide (which
has been passed in
from Main) to
Side

this.Side «— NewSide

Figure 11 Code for the SetSide() method
ComputeVolume(Side) Method:

The ComputeVolume(Side)Method computes the volume of the cube. First, it must receive
the value needed for the computation (Side). Then, it must do the computation by cubing the

value. Finally, it needs to export this result when requested. Figure 12 shows the code.

13 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

UML | main Cube |

- Sidesint SetSidel_ComputeVolume DGetvolume | GetSide |

= Volume:

Start (in Side)

t

)) . Assigns the value that is passed into
this.Side «— Side the Method to the variable Side

L

Volume «— Side " 3 completes the computation

RETURN Volume returns the value of Volume
when requested

i

Figure 12 Code for the ComputeVolume() method
GetVolume(Volume) Method:

The GetVolume(Volume)Method retrieves the value of Volume when it is accessed and then

returns it, as shown in Figure 13.

14 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

UML | main Cube |

Siderint SetSide | ComputeVolume GefVolume | GetSide |
WVolume:

Figure 13 Code for the GetVolume() method

GetSide() Method:

The GetSide() Method retrieves the value of Side when accessed, as shown in Figure 14.

UML | main Lube |

Side:int SetSide | ComputeVolume | GetVolume GetSide |
Volume: T

GetSide «— Side

End

Figure 14 Code for the GetSide() method

15 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

The Main Program

Now the Maln program can be created. The program for this example is extremely simple; it will
allow the user to enter a value for the side of a cube, compute the volume of that cube, and
display the result. This is accomplished by instantiating an object of type Cube, which we will call
CubeOne, and using the methods and attributes of Cube. Figure 15 shows how this is done the
RAPTOR OOP way.

@& [[r[n][m[m]p[F] —) [150% 7]
UML main | Cube |

First set a variable equal to your new
Class name using the new keyword to
CubeOne < new Cube indicate that this is a new instance of the
class. Here CubeOne 15 a new nstance of
the Class Cube.

"Enter lmgth of a side" I‘?.q.:anx-'c 1|19 lcnglh_u] a _.slc_lq.: of the ;uhc
. from the user and store 1t in the variable
GET Side Side.

m

Call the SetSide () Method fo passin
the value of 3de.

CubeOne.SetSide(Side)

v & T

CubeOne.ComputeVolume Call the ComputeVolume (} Method,
(Side) passing in the value of Side.
PUT Display the result, using the
CubeOne.ComputeVolume ComputeVolume () Method, passing in
(Side)q the value of 8ide.
End
4 1 | 3

Figure 15 Code to input a side of a cube and output its volume

16 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

Inheritance and Polymorphism

Once you have mastered the basics: creating Classes, Fields, and Methods, and using dot
notation in your program, you can use the OOP mode in RAPTOR to create and run more

complicated programs.

You create child classes that inherit from a parent class in the UML screen. Figure 16 (following
page) shows the association between a parent Class named Animal and two child Classes
(subclasses) named Frog and Snake. Use the New Association button to set the

inheritance between the parent and child, as indicated in Figure 16.

In this example, Frog and Snake inherit the showAnimalStuff() Method from Animal
but each child class has its own Method for mnakeSound () and showAnimalType(). The
OOP characteristics of both polymorphism and inheritance are demonstrated by this example.
[Special thanks to George L. Marshall, Jr. from Calhoun Community College at the Research Park

Campus in Huntsville, Alabama for the Animal example.]

17 of 18

edited from Appendix D: Introduction to RAPTOR
Prelude to Programming: Concepts and Design, 5 edition
by Elizabeth Drake and Stewart Venit

Addison-Wesley Pub. 2011

=

ela| | [v]o]n|npals] —) o
umL |mam]AmnmI]SnakelFmg l
Mame: Access: -| Modifier; -
i e T B I T = — G
100% § —J)}— @ =
use to create associations between
Parent and Child Classes
Animal

+ showanimal Type() : void
+ makeSound(): void

+ showanimal Stuff{body: Animal) : void

Parent Class Animal
has three Methods

Two Child Classes, Snake
and Frog,inherit from

Snake

Animal and each has its own
two Methods.

Frog

+ showAnimalType() : void
+ makeSound() : void

+ showaAnimalType() : void
+ makeSound(): void

Figure 16 Child Classes inherit from the Parent Class

By combining all the features of RAPTOR’s OOP mode and all that you have learned in this text

about object-oriented programming, it is possible to create some interesting and sophisticated

programs.

18 of 18

