
 1

Learning Programming Concepts Using Flowcharting

Software

Kwan Chi Kuen

Computer Department, King Ling College, Hong Kong

ABSTRACT

Traditionally, when students learn programming concepts by

sticking on a particular programming language, they have to spend

time struggling against the syntax of that programming language,

which distracts themselves from exploring the algorithm. If only

flowchart is taught without programming, students cannot execute

their flowchart, making them unable to justify their algorithm.

RAPTOR is a flowcharting software which solve the above

dilemma—by writing flowcharts which can be executed, student

can learn programming visually and easily, without suffering from

the tedious syntax.

Keywords: Flowcharts, Programming Concept, RAPTOR

I. INTRODUCTION

According to the Education Bureau in HKSAR, one of the

main focuses on Technology Education (TE) in Hong Kong

secondary school curriculum is to learn “how human beings

solve their daily problems and how the processes involved can

be replicated and transferred to solve new problems.”[1]. Being

one of the subjects in the Technology Education Key Learning

Area (TEKLA), Information and Communication Technology

(ICT) requires students having intensive skills in solving daily

life problems. To do so, ICT students have to learn basic

programming concepts, which provide students a basic

understanding of the steps and strategies involved in solving a

problem systematically.

Traditionally, two approaches are used to learn

programming:

Approach 1
Learn a programming language (such as Pascal or C), then

write programs using that programming language.

Approach 2
Learn the algorithm, i.e. the steps to solve a problem, and

represent the algorithm using appropriate tool(s), such as

flowchart or pesudocode.

The disadvantage of Approach 1 is that learning

programming using programming language sounds too

difficult for less able students, as they have to memorize all

the syntax of that particular programming language, and they

are strongly discouraged when they fail to get their programs

compiled due to some minor but tedious syntax errors (such as

having “;” missed, using “=” instead of “:=”) – even if their

algorithms are correct. Note that the main aim in programming

is to solve problems, the key item students have to learn is the

algorithm, not the syntax. The complicated syntax of a

programming language forces students to fix syntax errors,

instead of the logical error of the algorithm. The syntax also

discourage them from learning programming, as they have an

impression that learning program is difficult, given that their

program can never get compiled.

To solve the problem, starting from 2003, the compulsory

part of the Computer & Information Technology (CIT)

Curriculum (now replaced by ICT) in senior secondary did not

require students learning programming languages any more.

Such part is left to be taught in an elective module, where

more able students can select this module and explore the fun

of writing program using programming language(s). Instead,

in the compulsory part, CIT/ICT students are required to write

the algorithm using flowchart and pseudocode, i.e. Approach 2

is adopted. Without the barrier of syntax, students can focus

on the algorithm itself, and the essence of problem solving

using the correct algorithm is emphasized.

However, there is a major drawback on such approach. As

students are required to construct flowcharts which can never

be implemented, students can never know nor prove whether

their algorithms are correct. According the my experience,

once I asked 20 CIT students to write a flowchart to find out

the maximum number among 3 numbers, all of them managed

to write a flowchart, yet these 20 flowcharts were all different

from teacher’s “model answer”. They all knew that teacher’s

“model answer” was correct, yet they were not sure whether

their own answers were correct or not. They could not test

their flowchart to justify that the algorithms were correct as

that flowcharts, written on pieces of paper, were not

executable.

II. FLOWCHARTING SOFTWARE

Using flowcharting software can solve the drawbacks in

both Approach 1 and Approach 2 mentioned above.
Flowcharting software, such as RAPTOR, provides a user

 2

interface for users to create executable flowcharts. Instead of
writing program codes which might cause syntax errors, in
RAPTOR, the main algorithm is represented by flowchart(s).
All students need to do is to drag flowchart symbols to the
editing area, and arrows will automatically links symbols
together. In such case, students can focus on the correctness of
the algorithm (i.e. minimizing logical error), instead of the
correctness of the syntax (i.e. minimizing syntax error). In
RAPTOR, syntax is minimized. Besides, as the flowchart is
executable, students can test their flowcharts, making them
being able to justify the correctness of their algorithms.

III. DESCRIPTION OF RAPTOR

RAPTOR stands for Rapid Algorithmic Programming Tool

for Ordered Reasoning, which is a free flowcharting software

package running in the .NET Framework. When a new

RAPTOR file is opened, a blank flowchart is formed with

“Begin” and “End” symbols includes. User can drag either one

of the six flowchart symbols / structure to the editing area each

time:

- Assignment Symbol: For assigning variables

- Call: For calling sub-flowcharts

- Input Symbol

- Output Symbol

- Selection Structure

- Loop Structure (Iteration)

Figure 1. Flowchart symbols/structures in RAPTOR

Such arrangement makes sure that the flowchart is well

structured, making loops being properly nested, and arrows
being properly connected. To minimize syntax error, RAPTOR
allows flexible syntax, e.g. the Boolean “AND” operation can
be represented by either “&&” or “AND”. Besides, RAPTOR
supports around 40 build-in functions which provide supports
like file operation, drawing graphs, generating random number
etc.

To write flowcharts, students need to drag the flowchart
symbols/control structures to the editing area, between the
“Begin” symbol and the “End” symbol. To execute the

flowchart, one can press the “Play” button. Students can also
stop or pause the execution by pressing the “Stop” and “Pause”
button. There’s a “Step to next Shape” button which allows
students tracing the flowchart symbol by symbol, in a “step by
step” manner. The execution result can either be showed on the
console, or on the graphical user interface (GUI) written by the
student. During execution, the status of the variables is also
shown.

Figure 2. RAPTOR interface

IV. ADVENTAGE IN USING RAPTORS IN

TEACHING PROGRAMMING CONCEPTS

Besides the advantages mentioned above, below are other

advantages which makes RATPOR a desirable tool in teaching

programming concepts:

1. The flowcharts in RAPTOR allow students learning

programming and tracing algorithm visually.

2. RAPTOR allows students carrying out dry run with

adjustable speed, meaning that students can trace the

algorithm according to their progress. Learner diversity is

catered.

3. Teachers can adjust the speed of the execution of the

flowchart during dry run, so that he can expand certain

points in details.

4. During execution, RAPTOR displays the value(s) stored

in various variables. This allows student understand the

changes of the values of variables during different stages

of the algorithm.

5. RAPTOR files can be exported to “pseudocode” with the

following syntax: Ada, C#, C, Java.

6. RAPTOR supports sub-flowcharts, drawing graphs, sound,

array, file, event (mouse, keyboard), sound, vector

graphics etc.

7. Students can find most references in “Help”, which

facilitate self-learning.

 3

V. LIMITATIONS IN USING RAPTOR IN

TEACHING PROGRAMMING CONCEPTS

Although RAPTOR has huge advantages, there are two

major limitations:

1. RAPTOR provides English interface only. In CMI

(Chinese-as-the-medium-of-instruction) schools, it’s a

major drawback.

2. The flowchart symbols used in RAPTOR is a bit different

from the commonly used flowchart symbols. E.g. in

RAPTOR, the Input symbol consists of a parallelogram

with an arrow, while a commonly used Input symbol

consists of a parallelogram only.

VI. RAPTOR AND THE HONG KONG ICT

CURRICULUM

In Hong Kong, ICT students can learn programming

concepts in two different levels. All ICT students have to learn

basic programming concepts, as stated in the compulsory part

of the ICT curriculum[2]. This compulsory module does not

require students learning particular programming language.

For students who are more interested in programming, they

can choose the “System Development” module in the elective

part of the curriculum.

The Basic Programming Concepts module in the

compulsory part of the ICT curriculum is further divided into

three parts, namely “Problem-Solving Procedures”,

“Algorithm Design” and “Algorithm Testing”. Using

RAPTOR, the following topics stated in the curriculum can be

taught:

 • Problem-Solving Procedures – Solve a problem by breaking it down into

sub-problems or modules • Algorithm Design – Design an appropriate user interface – Data types and data structures (integer, real,

character, Boolean, string, 1D array) – Control structure (Sequence, selection,

iteration) – Modularity • Algorithm Testing – Trace & test algorithm

RAPTOR can in fact cover most of the topics stated in the

compulsory module of the curriculum.

VII. DEVEOPMENT OF BASIC PROGRAMMING

CONCEPTS TEACHING PACK BASED ON RAPTOR FOR

SECONDARY SCHOOLS IN HONG KONG

Due to the usefulness of RAPTOR in learning programming

concepts, various activities had been done to introduce

RAPTOR to ICT teachers in Hong Kong. A Teaching Pack

was also developed for teachers to teach ICT programming

concepts using RAPTOR. The details are as follows:

A. Phase 1. Introducing the software

Being a seconded teacher in the Curriculum Development

Institute in the Education Bureau, in May 2008, I introduced

RAPTOR to around 300 Hong Kong Secondary Schools ICT

teachers in a seminar organized by the Education Bureau.

After the seminar, some teachers asked whether tailor-made

teaching pack can be developed which help teachers teaching

senior form ICT using RAPTOR.

B. Phase 2. Developing Tailor Made Teaching Pack

Based on the requests of the teachers, I’ve spend months

developing a teaching pack which help teachers teaching the

whole ICT Basic Programming Concepts module (in the

compulsory part) using RAPTOR and some other software

packages. The full name of the teaching pack is called “NSS

Information and Communication Technology: Basic

Programming Concepts Teaching Pack” (Teaching Pack). It

allows teacher using RAPTOR to teach most of the

programming concepts stated in the ICT curriculum. The

Teaching Pack contains 12 chapters, with around 30 RAPTOR

tasks, and 6 major projects, which cover areas like control

structures, data type, array, modular approaches, testing etc. It

takes around 20 hours to go through the whole Teaching Pack.

Figure 3. Snapshot of the NSS Information and Communication

Technology :Basic Programming Concepts Teaching Pack

The main design principles of the Teaching Pack are as

follows (Kwan, 2008)[3]:

1. The Teaching Pack is mainly based on the NSS

Information and Communication Technology (ICT)

curriculum. It is also suitable for the archived Computer

and Information Technology (CIT) curriculum.

2. The Teaching Pack encourages learning through activities

(i.e. Task-based learning).

3. All the algorithms in the Teaching Pack are illustrated

 4

with flowcharts and pseudocode so that students can focus

on the algorithms in problem-solving instead of the syntax

of programming languages.

4. Activities in the Teaching Pack require students to use

specific software to execute the flowcharts. Through the

executions of the flowcharts, students can know whether

the algorithms are correct or not and learn how to perform

algorithm testing, debugging and dry running.

5. The activities use real-life examples as exercises.

6. Freeware is used for teaching and learning which is easy

to promote and it allows students to install the software at

home for self-study or revision purpose.

7. Some of the activities and projects are divided into

different levels so as to cater learners’ diversity.

8. The Teaching Pack does not aim to replace textbooks. It is

activity oriented by providing a number of executable

flowcharts for practice while textbooks stress more on the

theories behind the activities. The Teaching Pack and

textbooks can be used together to complement each other.

C. Phase 3. Piloting

The Teaching Pack was first written in Chinese. It was

piloted in King Ling College from Sept 2008 to Oct 2008. In

the pilot scheme, 40 students were divided into two groups.

Group A used RAPTOR and the Teaching Pack to learn

programming concepts, while Group B, being the control

group, learnt programming by purely constructing flowcharts

on paper. One quiz and one examination were conducted

afterward, and the results are as follows:

TABLE I. ASSESSMENT RESULTS

Group A
(Using

RAPTOR)

Group B
(Control)

Mean mark of the quiz 46 36

Mean mark of the examination 62 49

D. Phase 4. Formal Release (Chinese Version)

The Chinese version of the Teaching Pack was launched in

a seminar in Jun 2009. In the seminar, the Teaching Pack was

introduced. Around 300 ICT teachers attended the seminar and

teachers can freely download the Teaching Pack in the CA

online platform provided by the Education Bureau.

E. Phase 5. Formal Release (English Version)

As some teachers requested for the English version of the

Teaching Pack, the Chinese version was then translated into

English version with the help of the Curriculum Development

Institute in the Education Bureau. Another seminar was

launched in July 2010 and the English version was launched at

the same time.

VIII. FUTURE WORK

 After the formal launch of the RAPTOR Teaching Pack,

recently my ICT students are working developing simple

computer games using RAPTOR. A project was conducted in

King Ling College, which requires ICT students creating a

computer game using RAPTOR. The result was promising, as

students managed to use simple flowchart components to create

complicated and funny games. For example, one group had

created a memory game using RAPTOP. A GUI was developed,

where users can choose the level of difficulty.

Figure 4. Memory game developed by ICT students using RAPTOR

IX. CONCLUSIONS

Using RAPTOR, ICT students can learn programming

concepts easily by drawing executable flowcharts. Tedious
syntax problems can be avoided, which helps students focus on
the algorithm instead.

X. REFERENCES

[1] The Curriculum Development Council and the Hong Kong

Examinatinos and Assessment Authority. “Information &
Communication Technology Curriculum and Assessment Guide
(Secondary 4-6)”, 2007, pp. 1-2.

[2] The Curriculum Development Council and the Hong Kong
Examinatinos and Assessment Authority. “Information &
Communication Technology Curriculum and Assessment Guide
(Secondary 4-6)” , 2007, pp. 7.

[3] C.K. Kwan. , “NSS Information and Communication Technology: Basic
Programming Concepts Teaching Pack” ,2008.

